Bentuk 5(6 k) dapat habis dibagi 5 dan bentuk 6 k + 4 juga habis dibagi dengan 5. Sehingga P(k+1) dapat habis dibagi 5 dan pernyataan tersebut bernilai benar. Berdasarkan induksi matematika yang dilakukan menunjukkan bahwa pernyataan “6 n + 4 habis dibagi dengan 5, untuk setiap n adalah bilangan asli” adalah benar.
Mari kita membuktikan menggunakan induksi matematika! D Soal Buktikan dengan induksi matematika bahwa $n^3 - n$ habis dibagi $3$ untuk setiap bilangan asli $n$. Pembahasan Ingat ya yang dimaksud dengan bilangan asli itu disimbolkan dengan $\mathbb{N}$ adalah $1,2,3,4,5$,.., dst. Untuk membuktikan bahwa $n^3 - n$ habis dibagi $3$ untuk setiap bilangan asli $n$ dengan metode induksi matematika, kita harus melakukan 3 langkah berikut. Langkah Pembuktian ke-1 Buktikan Berlaku untuk $n = 1$. Pada langkah ini, kita harus membuktikan bahwa $n^3 - n$ habis dibagi $3$ untuk $n= 1$. Caranya? Ya, substitusikan saja $n=1$ ke $n^3-n$. Kita akan memperoleh $\begin{split} n^3 - n &= 1^3 - 1 \\ &= 1 - 1 \\ &= 0 \end{split}$ Jelas sekali ya bahwa $0$ itu kan habis dibagi dengan $3$. Jadi, pada langkah ke-1 ini kita sudah berhasil membuktikan bahwa $n^3 - n$ habis dibagi $3$ untuk $n= 1$. Mari kita berbahagia sebentar. Hahaha. D Untuk membuktikan bahwa $n^3 - n$ habis dibagi $3$ untuk $n=2,3,4,5,6...$ dst ya... silakan simak kelanjutan pembuktian di bawah! D Langkah Pembuktian ke-2 Diasumsikan Berlaku untuk suatu $n = p$. Pada langkah ini, kita mengasumsikan bahwa $n^3 - n$ habis dibagi $3$ untuk suatu bilangan asli $n$ yang bernilai $p$. Dengan kata lain, terdapat suatu bilangan asli $p$, sedemikian sehingga $p^3 - p$ habis dibagi $3$. Ingat ya! Ini baru asumsi lho! Asumsi itu adalah sesuatu yang diyakini kebenarannya, tapi belum terbukti benar. Intermeso Selingan Proses Pembuktian Progress kita sejauh ini Kita berhasil membuktikan bahwa $n^3 - n$ habis dibagi $3$ untuk nilai $n = 1$. Kita mengasumsikan bahwa $n^3 - n$ habis dibagi $3$ untuk suatu nilai $n=p$. Pada intemeso alias selingan proses pembuktian ini, kita akan mengulik sedikit perihal bentuk $n^3 -n$. Perhatikan bahwa $n^3-n$ itu kan bisa difaktorkan. Ya toh? D Nah, jika $n^3 -n$ difaktorkan, akan diperoleh $n^3 - n = n-1\cdotn\cdotn+1$ Perhatikan bahwa untuk sebarang bilangan asli $n$, akan berlaku $n \neq n-1$. Ya toh? Untuk sebarang bilangan asli $n$, kita juga dapat menyatakan bahwa $n \neq n+1$. Ya toh? Jadi, kita dapat menyimpulkan bahwa $n$, $n-1$, dan $n+1$ adalah $3$ bilangan asli yang berbeda. Ya tidak? D Dari sifat-sifat di atas, kita dapat menyatakan suatu sifat baru ini. Jika bilangan $n$, $n-1$, dan $n+1$ kita kalikan, kemudian terdapat suatu bilangan asli $x$ yang membagi habis hasil perkalian $3$ bilangan tersebut, maka salah satu dari $n$, $n-1$, atau $n+1$ pastilah kelipatan $x$. Kita akan menggunakan sifat di atas pada Langkah Pembuktian ke-3. Intermeso selesai sampai di sini. Mari, sekarang kita kembali ke langkah utama pembuktian. Langkah Pembuktian ke-3 Buktikan Berlaku untuk $n = p + 1$. Pada langkah ini, kita harus membuktikan bahwa $n^3 - n$ habis dibagi $3$ untuk $n = p + 1$. Sebelumnya, ingat bahwa pada bagian Intermeso, kita dapat memfaktorkan $n^3 - n$ menjadi $n-1\cdotn\cdotn+1$. Dengan demikian, dengan mensubstitusikan $n=p+1$ ke $n-1\cdotn\cdotn+1$, kita akan memperoleh $\begin{split} n^3 - n &=n-1\cdotn\cdotn+1 \\ &= p+1 - 1\cdotp+1\cdotp+1+1\\ &= p\cdotp+1\cdotp+2 \\ \end{split}$ Jadi, membuktikan bahwa $n^3 - n$ habis dibagi $3$ untuk $n = p + 1$ ekuivalen dengan membuktikan bahwa $p\cdotp+1\cdotp+2$ habis dibagi $3$. *** Selanjutnya, bagaimanakah cara membuktikan bahwa $p\cdotp+1\cdotp+2$ habis dibagi $3$? Ingat! Pada Langkah Pembuktian ke-2, kita mengasumsikan bahwa $p^3 - p$ habis dibagi $3$. Karena $p^3 - p$ dapat difaktorkan menjadi $p-1\cdotp\cdotp+1$, maka asumsi bahwa $p^3 - p$ habis dibagi $3$ akan ekuivalen dengan asumsi bahwa $p-1\cdotp\cdotp+1$ habis dibagi $3$. Perhatikan bahwa $p$, $p-1$, dan $p+1$ adalah tiga bilangan asli yang berbeda. Oleh sebab itu, karena asumsi $p-1\cdotp\cdotp+1$ habis dibagi $3$, menurut sifat di dalam kotak biru di bagian Intermeso, kita dapat menyimpulkan bahwa Salah satu dari $p$, $p-1$, atau $p+1$ adalah kelipatan $3$. Bisa jadi, $p$ adalah kelipatan $3$. Bisa jadi, $p-1$ adalah kelipatan $3$. Bisa jadi, $p+1$ adalah kelipatan $3$. Pokoknya, salah satu dari $p$, $p-1$, atau $p+1$ adalah kelipatan $3$. Mari kita cermati tiga kemungkinan tersebut satu per satu. *** Kemungkinan Pertama $p$ adalah kelipatan $3$. Pada kemungkinan ini, $p$ adalah bilangan asli kelipatan $3$. Ingat! Misi utama kita pada Langkah Pembuktian ke-3 ini adalah membuktikan bahwa $p\cdotp+1\cdotp+2$ habis dibagi dengan $3$. Perhatikan! Karena $p$ adalah salah satu faktor dari $p\cdotp+1\cdotp+2$, maka dapat kita simpulkan bahwa $p\cdotp+1\cdotp+2$ merupakan bilangan asli kelipatan $3$. Dengan kata lain, $p\cdotp+1\cdotp+2$ habis dibagi $3$. Jadi, jika $p$ merupakan bilangan asli kelipatan $3$, maka $p\cdotp+1\cdotp+2$ akan habis dibagi $3$. Kemungkinan Kedua $p-1$ adalah kelipatan $3$. Pada kemungkinan ini, $p-1$ adalah bilangan asli kelipatan $3$. Oleh sebab itu, $p-1 + 3 = p+2$ juga merupakan bilangan asli kelipatan $3$ dong? Ingat! Misi utama kita pada Langkah Pembuktian ke-3 ini adalah membuktikan bahwa $p\cdotp+1\cdotp+2$ habis dibagi dengan $3$. Perhatikan! Karena $p+2$ adalah salah satu faktor dari $p\cdotp+1\cdotp+2$, maka dapat kita simpulkan bahwa $p\cdotp+1\cdotp+2$ merupakan bilangan asli kelipatan $3$. Dengan kata lain, $p\cdotp+1\cdotp+2$ habis dibagi $3$. Jadi, jika $p-1$ merupakan bilangan asli kelipatan $3$, maka $p\cdotp+1\cdotp+2$ akan habis dibagi $3$. Kemungkinan Ketiga $p+1$ adalah kelipatan $3$. Pada kemungkinan ini, $p+1$ adalah bilangan asli kelipatan $3$. Ingat! Misi utama kita pada Langkah Pembuktian ke-3 ini adalah membuktikan bahwa $p\cdotp+1\cdotp+2$ habis dibagi dengan $3$. Perhatikan! Karena $p+1$ adalah salah satu faktor dari $p\cdotp+1\cdotp+2$, maka dapat kita simpulkan bahwa $p\cdotp+1\cdotp+2$ merupakan bilangan asli kelipatan $3$. Dengan kata lain, $p\cdotp+1\cdotp+2$ habis dibagi $3$. Jadi, jika $p+1$ merupakan bilangan asli kelipatan $3$, maka $p\cdotp+1\cdotp+2$ akan habis dibagi $3$. *** Dari pembuktian panjang di atas, kita dapat menyimpulkan bahwa Jika $p$ adalah kelipatan $3$, maka $p\cdotp+1\cdotp+2$ akan habis dibagi dengan $3$. Jika $p-1$ adalah kelipatan $3$, maka $p\cdotp+1\cdotp+2$ akan habis dibagi dengan $3$. Jika $p+1$ adalah kelipatan $3$, maka $p\cdotp+1\cdotp+2$ akan habis dibagi dengan $3$. Dengan kata lain Berdasarkan asumsi bahwa $p-1\cdotp\cdotp+1$ habis dibagi dengan $3$, akan berlaku benar bahwa $p\cdotp+1\cdotp+2$ akan habis dibagi dengan $3$. Pernyataan di atas ekuivalen dengan Berdasarkan asumsi bahwa $p^3 - p$ habis dibagi dengan $3$, akan berlaku benar bahwa $p+1^3 - p+1$ akan habis dibagi dengan $3$. Kesimpulan Berdasarkan Langkah Pembuktian ke-1 hingga ke-3, kita dapat menyimpulkan benar bahwa $n^3 - n$ habis dibagi $3$ untuk setiap bilangan asli $n$. Jadi, jumlah semua bilangan asli antara 1 dan 150 yang habis dibagi 4 tetapi tidak habis dibagi 7 adalah 2.329. Itulah pembahasan contoh soal mengenai materi deret aritmatika, semoga bermanfaat dan mudah untuk dipahami yah. BuktiMari kita asumsikan sebaliknya bahwa 3 adalah bilangan rasional. Dapat dinyatakan dalam bentuk p/q di mana p dan q adalah ko-prima dan q≠ 0. 3 = p/q 3 = p 2 /q 2 (Mengkuadratkan Kita harus membuktikan bahwa akar kuadrat dari 3 adalah bilangan irasional. PengertianBilangan Prima. Dalam ilmu matematika bilangan prima diartikan sebagai bilangan asli yang lebih dari satu tapi yang hanya bisa dibagi dengan 1 dan bilangan itu sendiri. Bingung ? lihat pengertian dibawah lebih singkat jelas . 258 133 361 442 142 115 373 327